metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Meimei Wu, Liyi Zhang and Zhongning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.026 \text{ Å}$ R factor = 0.066 wR factor = 0.160 Data-to-parameter ratio = 14.5

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis[µ-bis(diphenylphosphino)methane]digold(I) bis(hexafluorophosphate) dichloromethane disolvate

The dication in the title compound, $[Au_2(C_{25}H_{22}P_2)_2]$ -(PF₆)₂·2CH₂Cl₂ or $[Au_2(\mu$ -dppm)₂](PF₆)₂·2CH₂Cl₂, where dppm is bis(diphenylphosphino)methane, is situated about a twofold axis and each anion lies on a mirror plane. Each Au atom is two-coordinate and exists in an approximately linear geometry. Received 23 December 2002 Accepted 13 January 2003 Online 24 January 2003

Comment

Binuclear complexes of gold with certain bidentate ligands are of interest owing to their rich luminescence and bonding properties (Jaw *et al.*, 1989; Khan *et al.*, 1988; King *et al.*, 1989). In this context, several compounds of binuclear $[Au_2(\mu-dppm)_2]^{2+}$ have been characterized previously (Jaw *et al.*, 1989; Khan *et al.*, 1989; Porter *et al.*, 1989; Liou *et al.*, 1994; Wang & Liu, 1994; Bauer & Schmidbaur, 1997), counterbalanced by various anionic species. Here we describe another crystal structure determination of the dication, in this case isolated as the hexafluorophosphate salt, $[Au_2(\mu-dppm)_2](PF_6)_{2}$ -2CH₂Cl₂, (I) (Fig. 1 and Table 1).

The asymmetric unit of (I) comprises half a dication, $[Au_2(\mu\text{-}dppm)_2]^{2+}$, situated about a twofold axis of symmetry, two independent PF_6^- anions, each lying on a mirror plane, and two molecules of dichloromethane. The Au atoms are doubly bridged by two dppm ligands. Each Au atom exists in the expected linear geometry, with the P1-Au-P2 angle being 177.85 (13)°. The intramolecular Au···Au separation is 2.9792 (10) Å. The overall molecular geometry is in essential agreement with the previously determined structures cited above.

Experimental

The title compound was synthesized by a modification of a literature procedure (Porter *et al.*, 1989). The complex was obtained by the reaction between $[Au_2(\mu$ -dppm)_2]Cl_2 and AgPF_6 in a 1:2 ratio in acetonitrile solution under anaerobic conditions for 12 h. After the white precipitate, AgCl, was filtered off, the solution was evaporated under vacuum, affording $[Au_2(\mu$ -dppm)_2](PF_6)_2 in good yield. Well-

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

formed colorless crystals suitable for X-ray diffraction measurements were grown by the slow diffusion of diethyl ether into a solution of the salt in a mixture of dichloromethane and a minimum of acetonitrile at room temperature.

Mo Ka radiation

reflections

 $\theta = 1.8-25.1^{\circ}$ $\mu = 5.51 \text{ mm}^{-1}$

T = 293 (2) K

Block, colorless $0.42 \times 0.40 \times 0.20 \text{ mm}$

Cell parameters from 4469

Crystal data

[Au₂(C₂₅H₂₂P₂)₂](PF₆)₂·2CH₂Cl₂ $M_r = 1622.46$ Orthorhombic, Pnma a = 20.6825 (10) Åb = 21.0325 (9) Å c = 13.2577 (6) Å $V = 5767.2(5) \text{ Å}^3$ Z = 4 $D_x = 1.869 \text{ Mg m}^{-3}$

Data collection

Siemens SMART CCD	5246 independent reflections
diffractometer	3249 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.097$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.1^{\circ}$
(SADABS; Sheldrick, 1996)	$h = -24 \rightarrow 24$
$T_{\min} = 0.121, \ T_{\max} = 0.332$	$k = -20 \rightarrow 25$
16736 measured reflections	$l = -15 \rightarrow 13$

Refinement

Refinement on F^2	$w = 1[\sigma^2(F_o^2) + (0.0355P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.066$	+ 11.5869P]
$wR(F^2) = 0.160$	where $P = (F_o^2 + 2F_c^2)3$
S = 1.13	$(\Delta/\sigma)_{\rm max} = 0.001$
5246 reflections	$\Delta \rho_{\rm max} = 1.79 \ {\rm e} \ {\rm \AA}^{-3}$
361 parameters	$\Delta \rho_{\rm min} = -1.15 \text{ e} \text{ \AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

Au-P1	2.314 (3)	P1-C21	1.804 (14)
Au-Au ⁱ	2.9792 (10)	P2-C2	1.821 (9)
P1-Au-P2	177.85 (13)	C1-P1-Au	111.1 (5)
P1-Au-Au ⁱ	91.18 (10)	C31-P2-C2	107.5 (8)
P2-Au-Au ⁱ	90.89 (9)	C31-P2-Au	114.0 (4)
C21-P1-C1	106.6 (8)	C41-P2-Au	113.1 (4)
C21-P1-Au	113.9 (5)	C2-P2-Au	110.7 (5)

Symmetry code: (i) $x, \frac{1}{2} - y, z$.

The H atoms were positioned geometrically (C-H bonds lengths were fixed at 0.96 Å), assigned isotropic displacement parameters and allowed to ride on their respective parent C atoms. The maximum residual electron-density peak was located near the Au atom.

Data collection: SMART (Siemens, 1996); cell refinement: SMART and SAINT (Siemens, 1994); data reduction: SAINT and XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; mole-

Figure 1

View of the dication of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.

cular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSF of China (No. 20171044).

References

- Bauer, A. & Schmidbaur, H. (1997). J. Chem. Soc. Dalton Trans. pp. 1115-1116.
- Jaw, H. R. C., Savas, M. M., Rogers, R. D. & Mason, W. R. (1989). Inorg. Chem. 29, 1028-1037.
- Khan, M. N. I., Fackler, J. P. Jr, King, C., Wang, J. C. & Wang, S. (1988). Inorg. Chem. 28, 1672-1673.
- Khan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr & Porter, L. C. (1989). Inorg. Chem. 29, 2150-2154.
- King, C., Wang, J. C., Khan, M. N. I. & Fackler, J. P. Jr (1989). Inorg. Chem. 29, 2145-2149.
- Liou, L. S., Liu, C. P. & Wang, J. C. (1994). Acta Cryst. C50, 538-540.
- Porter, L. C., Khan, M. N. I., King, C. & Fackler, J. P. Jr (1989). Acta Cryst. C45, 947-949.
- Sheldrick, G. (1996). SADABS. University of Göttingen, Germany.
- Siemens (1994). SAINT and SHELXTL Reference Manuals. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, J. C. & Liu. L. K. (1994). Acta Cryst. C50, 704-706.