Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Meimei Wu, Liyi Zhang and Zhongning Chen*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Fuzhou, Fujian 350002, People's Republic of China

Correspondence e-mail: czn@ms.fjirsm.ac.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.026 \AA$
R factor $=0.066$
$w R$ factor $=0.160$
Data-to-parameter ratio $=14.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

Bis[μ-bis(diphenylphosphino)methane]digold(I) bis(hexafluorophosphate) dichloromethane disolvate

The dication in the title compound, $\left[\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\right]$ $\left(\mathrm{PF}_{6}\right)_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ or $\left[\mathrm{Au}_{2}(\mu \text {-dppm })_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, where dppm is bis(diphenylphosphino)methane, is situated about a twofold axis and each anion lies on a mirror plane. Each Au atom is two-coordinate and exists in an approximately linear geometry.

Comment

Binuclear complexes of gold with certain bidentate ligands are of interest owing to their rich luminescence and bonding properties (Jaw et al., 1989; Khan et al., 1988; King et al., 1989). In this context, several compounds of binuclear $\left[\mathrm{Au}_{2}(\mu-\right.$ dppm) $\left.)_{2}\right]^{2+}$ have been characterized previously (Jaw et al., 1989; Khan et al., 1989; Porter et al., 1989; Liou et al., 1994; Wang \& Liu, 1994; Bauer \& Schmidbaur, 1997), counterbalanced by various anionic species. Here we describe another crystal structure determination of the dication, in this case isolated as the hexafluorophosphate salt, $\left[\mathrm{Au}_{2}(\mu \text {-dppm })_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot-$ $2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (I) (Fig. 1 and Table 1).

The asymmetric unit of (I) comprises half a dication, $\left[\mathrm{Au}_{2}(\mu \text {-dppm })_{2}\right]^{2+}$, situated about a twofold axis of symmetry, two independent $\mathrm{PF}_{6}{ }^{-}$anions, each lying on a mirror plane, and two molecules of dichloromethane. The Au atoms are doubly bridged by two dppm ligands. Each Au atom exists in the expected linear geometry, with the $\mathrm{P} 1-\mathrm{Au}-\mathrm{P} 2$ angle being $177.85(13)^{\circ}$. The intramolecular $\mathrm{Au} \cdots \mathrm{Au}$ separation is 2.9792 (10) \AA. The overall molecular geometry is in essential agreement with the previously determined structures cited above.

Experimental

The title compound was synthesized by a modification of a literature procedure (Porter et al., 1989). The complex was obtained by the reaction between $\left[\mathrm{Au}_{2}(\mu \text {-dppm })_{2}\right] \mathrm{Cl}_{2}$ and AgPF_{6} in a $1: 2$ ratio in acetonitrile solution under anaerobic conditions for 12 h . After the white precipitate, AgCl , was filtered off, the solution was evaporated under vacuum, affording $\left[\mathrm{Au}_{2}(\mu \text {-dppm })_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ in good yield. Well-

Received 23 December 2002
Accepted 13 January 2003
Online 24 January 2003
formed colorless crystals suitable for X-ray diffraction measurements were grown by the slow diffusion of diethyl ether into a solution of the salt in a mixture of dichloromethane and a minimum of acetonitrile at room temperature.

Crystal data
$\left[\mathrm{Au}_{2}\left(\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{P}_{2}\right)_{2}\right]\left(\mathrm{PF}_{6}\right)_{2} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=1622.46$
Orthorhombic, Pnma
$a=20.6825$ (10) \AA
$b=21.0325$ (9) \AA
$c=13.2577$ (6) A
$V=5767.2(5) \AA^{3}$
$Z=4$
$D_{x}=1.869 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens SMART CCD diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\min }=0.121, T_{\max }=0.332$
16736 measured reflections

Refinement

Refinement on F^{2}
Mo $K \alpha$ radiation
Cell parameters from 4469
reflections
$\theta=1.8-25.1^{\circ}$
$\mu=5.51 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.42 \times 0.40 \times 0.20 \mathrm{~mm}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.160$
$S=1.13$
5246 reflections
361 parameters
H-atom parameters constrained

Figure 1
View of the dication of (I), showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted.
cular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the NSF of China (No. 20171044).

References

Bauer, A. \& Schmidbaur, H. (1997). J. Chem. Soc. Dalton Trans. pp. 11151116.

Jaw, H. R. C., Savas, M. M., Rogers, R. D. \& Mason, W. R. (1989). Inorg. Chem. 29, 1028-1037.
Khan, M. N. I., Fackler, J. P. Jr, King, C., Wang, J. C. \& Wang, S. (1988). Inorg. Chem. 28, 1672-1673.
Khan, M. N. I., King, C., Heinrich, D. D., Fackler, J. P. Jr \& Porter, L. C. (1989). Inorg. Chem. 29, 2150-2154.
King, C., Wang, J. C., Khan, M. N. I. \& Fackler, J. P. Jr (1989). Inorg. Chem. 29, 2145-2149.
Liou, L. S., Liu, C. P. \& Wang, J. C. (1994). Acta Cryst. C50, 538-540.
Porter, L. C., Khan, M. N. I., King, C. \& Fackler, J. P. Jr (1989). Acta Cryst. C45, 947-949.
Sheldrick, G.. (1996). SADABS. University of Göttingen, Germany.
Siemens (1994). SAINT and SHELXTL Reference Manuals. Version 5. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART Reference Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wang, J. C. \& Liu. L. K. (1994). Acta Cryst. C50, 704-706.

